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Abstract
A model of opinion dynamics based on social influence on networks was
studied. The opinion of each agent can have integer values i = 1, 2, . . . , I

and opinion exchanges are restricted to connected agents. It was found that for
any I � 2 and self-confidence parameter 0 � u < 1, when u is a degree-
independent constant, the weighted proportion 〈qi〉 of the population that
hold a given opinion i is a martingale, and the fraction qi of opinion i will
gradually converge to 〈qi〉. The tendency can slow down with the increase
of degree assortativity of networks. When u is degree dependent, 〈qi〉 does
not possess the martingale property, however qi still converges to it. In both
cases for a finite network the states of all agents will finally reach consensus.
Further if there exist stubborn persons in the population whose opinions do
not change over time, it was found that for degree-independent constant u,
both qi and 〈qi〉 will converge to fixed proportions which only depend on the
distribution of initial obstinate persons, and naturally the final equilibrium state
will be the coexistence of diverse opinions held by the stubborn people. The
analytical results were verified by numerical simulations on Barabási–Albert
(BA) networks. The model highlights the influence of high-degree agents on
the final consensus or coexistence state and captures some realistic features of
the diffusion of opinions in social networks.

PACS numbers: 05.40.−a, 89.75.Hc, 02.50.−r

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, there has been a lot of interest in the application of statistical physics paradigms
for a quantitative description and comprehension of collective social behavior of individuals
and economic processes (see [1] and references therein). An interesting research subject is
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opinion dynamics in socio-economic systems, which is a part of sociophysics [2, 3] and has
become a main stream of research in physics [4–19].

An individual opinion can be defined by a finite number of integers as in the model
proposed by Sznajd et al [7] and the social agents update their opinions as a result of social
influence, often according to some version of a majority rule or imitation [10, 20, 21]. Most
models on discrete opinion dynamics are based on binary opinions, e.g. two states—spin up
and spin down. Clusters of opposite opinions appear when the dynamics occur on a social
network with exchanges restricted to connected agents and these patterns resemble magnetic
domains in Ising ferromagnets [22]. Opinions can also be represented by real numbers, i.e.
the continuous opinions, as in the model proposed by Deffuant et al [23]. In both cases
generally the dynamical processes have a natural absorbing state or consensus, in which all
the agents share the same opinion [24]. Other models such as the one by Hegselmann and
Krause [25], the one based on social impact theory [26], the voter model [10–16], Galam’s
majority rule model [27–29] and Axelrod’s model [30] have been reviewed in [31]. As a
practical application, some researchers have also recently applied opinion dynamics to study
the spreading of technological innovations in a society [32].

In this paper, we study a social influence-based model of discrete opinion dynamics on
networks with agents located on the nodes of the networks. To make the model more generic
we assume, as is reasonable, that the initial number of opinions distributed in the whole society
is I � 2, which is like a q-state Potts model [33, 34]. Besides for each agent we assign a
self-confidence parameter 0 � u < 1 quantifying the extent to which the agent believes his
own choice, not subject to the opinions of his acquaintances. Instead of focusing on the mean
time to reach consensus in popular literatures on opinion dynamics, we study the statistical
properties of proportion qi and weighted proportion 〈qi〉 of opinion i by analytical calculations
and computer simulations.

First we study the case that all agents are undecided ones. It was shown that for any
I � 2, if 0 � u < 1 is a constant independent of agent degrees, 〈qi〉, which integrates the
information of degrees of the people holding opinion i, is a martingale, and qi will converge
to 〈qi〉. A more realistic scenario is that u is degree dependent, in which the convergence
property still holds. Second we also study the case that in the population there are stubborn
persons whose opinions never change. It was found that qi will converge to a proportion
which depends on both 〈qi〉 and the initial fraction of obstinate agents. Specifically if u is
a degree-independent constant, both 〈qi〉 and qi will converge to fixed constants which only
depend on the initial distribution of decided agents.

2. Model

Our model is implemented on a social network which is a connected graph with a certain degree
distribution. The nodes of the network represent agents in a society and edges represent their
social connections. In the following discussion, for practical purposes the network structure is
considered static over the time. We note that besides ordinary binary opinions or choices, such
as PC–Macintosh, Windows–Linux, coffee–tea, etc, in real life there exist many situations
in which the number of available choices is more than two, e.g. adopting the produce of
some brand or supporting some political party in elections of multi-party countries. Thus we
consider a general case and assume that the initial number of distinct opinions is I � 2. The
opinion of each agent can take discrete values i = 1, 2, . . . , I .

The model is described as follows. Starting from an initial opinion distribution, agents
asynchronously update their opinions at a rate λ. Namely during any time interval dt , each
agent updates his opinion (makes a decision as to which opinion to hold) with probability

2



J. Phys. A: Math. Theor. 42 (2009) 225005 H-B Hu and X-F Wang

Table 1. The basic parameters in the model.

Parameter Meaning

N total number of nodes
nk number of nodes with degree k
pk = nk/N degree distribution
mi,k number of nodes with degree k and opinion i
mi total number of nodes with opinion i
qi = mi/N fraction of nodes with opinion i
qi,k = mi,k/nk fraction of nodes with opinion i in all nodes with degree k
u probability of maintaining current opinion
v = 1 − u probability of randomly selecting a neighbor’s opinion

λ dt , based on the opinions of his neighbors. Due to the uncertainties concerning something
new, e.g. new brands of produce or political candidates, agents have to collect many opinions
of their acquaintances before taking any decisions; however, we also believe that each agent
has the capability of judgment and self-confidence to some extent, not completely subject to
the opinions of his neighbors. Thus we propose a parameter u which can characterize the
‘confidence’ of the agents and weights how much the agent trusts his own opinion with respect
to those of others. Specifically with probability 0 � u < 1 a given agent maintains his current
opinion, and with probability v = 1 − u the agent randomly selects one of his neighbors and
sets his new opinion to be the same as that neighbor, which is equivalent to assuming that the
probability that his new opinion will be i is c/d (the psychology of conformity) in this case
where c is the number of his neighbors with opinion i and d his degree.

The basic parameters and corresponding meanings for the model are listed in table 1.
When u = 0 and I = 2, the model is reduced to the general voter model which has been
studied extensively [13, 14, 16, 35]. In a finite system, the only possible steady state of the
dynamical process is the fully ordered state, in which all agents have the same opinion.

For the pattern evolution of the dynamics model, a key factor is that agents interact and this
generally tends to make neighborhood people more similar in opinion. On short timescales,
coexisting ordered domains of small size are formed. Repeated interactions in time and space,
i.e. a coarsening process of such domains [36, 37], lead to higher degree of homogeneity and
larger clusters with identical opinions. The drive toward order is provided by the pressure of
the majority of the agent’s peers in an average sense and the tendency of interacting agents
to become more alike. The effect is often termed ‘social influence’ [38] and can be seen as a
counterpart of ferromagnetic interaction in magnets.

3. Evolution of opinions for undecided agents

In this section, we first suppose that 0 < v � 1 is degree independent and for each agent the
value of v is the same and study the situation in section 3.1. In section 3.2 we will discuss a
more realistic case in which v is degree dependent, say it is a decreasing function of k. In the
long term, since v > 0, every agent has the chance of randomly selecting a neighbor’s opinion
as his updated one, and thus we could call the agents undecided ones.

3.1. When v is degree independent

Because all N agents update their opinions asynchronously and independently of each other
at the same rate, everyone has the same chance to be observed updating at time t. Thus the
probability that the update changes a degree-k agent from opinion not i to i is
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Figure 1. A star network with N = 9 agents and I = 5 opinions. The numbers in nodes represent
corresponding opinions.

Pī→i (k) = pk(1 − qi,k)v

∑
j jpjqi,j∑

j jpj

(1)

and the probability that the update changes a degree-k agent from opinion i to not i is

Pi→ī (k) = pkqi,kv

∑
j jpj (1 − qi,j )∑

j jpj

= pkqi,kv

(
1 −

∑
j jpjqi,j∑

j jpj

)
. (2)

Note that equations (1) and (2) are only valid for uncorrelated or weakly correlated networks.
We define

〈qi〉 =
∑

j jpjqi,j∑
j jpj

=
∑

j jmi,j

N 〈k〉 (3)

as the weighted fraction of opinion i (〈k〉 is the mean degree) and it is the fraction of total
degree of agents with opinion i in the total degree of the whole network. For the star network
in figure 1, q1 = 1/9 while 〈q1〉 = 8/16, which results from the large degree of agent with
opinion 1. The definition can reveal, as shown in the following discussion, the influence of
high-degree agents on the final state of the dynamics model.

Equations (1) and (2) can be rewritten as{
P ī→i (k) = pk(1 − qi,k)v〈qi〉
Pi→ī (k) = pkqi,kv(1 − 〈qi〉).

(4)

A particular update yields the following increment of mi,k:

�mi,k =

⎧⎪⎨
⎪⎩

+1 with probability pk(1 − qi,k)v〈qi〉
−1 with probability pkqi,kv (1 − 〈qi〉)
0 otherwise.

(5)

For the whole network the updating process is a Poisson process of rate Nλ. Therefore
the increase of mi,k in an interval (t, t + dt) is

�′mi,k =

⎧⎪⎨
⎪⎩

+1 with probability nk(1 − qi,k)v〈qi〉λ dt

−1 with probability nkqi,kv (1 − 〈qi〉) λ dt

0 otherwise.

(6)

The mean of �′mi,k is

E(�′mi,k) = nk(〈qi〉 − qi,k)vλ dt (7)
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and its second moment is given by

E[(�′mi,k)
2] = nk(1 − qi,k)v〈qi〉λ dt + nkqi,kv(1 − 〈qi〉)λ dt

= nk(〈qi〉 + qi,k − 2〈qi〉qi,k)vλ dt. (8)

Thus the variance of �′mi,k is

Var(�′mi,k) = nkσ
2
i,kvλ dt + o(dt2), (9)

where σ 2
i,k = 〈qi〉 + qi,k − 2〈qi〉qi,k .

According to the definition of qi,k , we have

E(�qi,k) = E(�′mi,k)

nk

= (〈qi〉 − qi,k)vλ dt (10)

and

Var(�qi,k) = Var(�′mi,k)

n2
k

� 1

nk

σ 2
i,kvλ dt. (11)

When the number of agents N is large, equations (10) and (11) can be approximately
described by the following Langevin equation:

dqi,k = (〈qi〉 − qi,k)vλ dt +
1√
nk

σi,k

√
λv dBt, (12)

where Bt is the k-independent Brownian motion. We redefine the time unit so that λ = 1, thus

dqi,k = (〈qi〉 − qi,k)v dt +
1√
nk

σi,k

√
v dBt . (13)

According to equation (3), we obtain

d〈qi(t)〉 =
∑

k kpk

[
1√
nk

σi,k

√
v dBt

]
∑

k kpk

. (14)

Therefore 〈qi(t)〉 is a martingale, and its mean

E[〈qi(t)〉] = const. (15)

When N is large 1/
√

nk is small, thus we can neglect the fluctuation term in equation (13)
and obtain

dqi,k

dt
= (〈qi〉 − qi,k)v. (16)

We can divide the agents into different groups according to their degrees, so that all agents
in the same group have the same degree. When N is large the size nk of each group is also
large, then we can approximately neglect the fluctuations within each group and replace the
groupwise random variables mi,k, qi,k by their mean values. In this manner, equation (16)
can be regarded as a set of normal differential equations which contain deterministic variables
only and its solution is

qi,k(t) = qi,k(0) e−vt + 〈qi〉(1 − e−vt ). (17)

Thus we have

lim
t→∞ qi,k(t) = 〈qi〉. (18)

According to qi(t) = ∑
k nkqi,k

/∑
k nk , we obtain

qi(t) = qi(0) e−vt + 〈qi〉(1 − e−vt ). (19)
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Thus

lim
t→∞ qi(t) = 〈qi〉 (20)

and

lim
t→∞ E[qi(t)] = E[〈qi〉]. (21)

The above-obtained results can apply to uncorrelated or weakly correlated networks
with arbitrary degree distributions. From the definition of 〈qi〉, we know that each agent is
given a weight equal to his degree k. Thus equation (20) reveals that high-degree agents
contribute more to the final fraction of opinions than the low-degree ones and thus they are
more influential, which is consistent with the real-life condition that a relatively small number
of people with high social status and prestige can affect a significant proportion of the whole
society in their opinion shift.

An instructive example is the extreme case of the star network (see figure 1), where
N − 1 agents are connected only to a single central hub. For our model, if the hub is in state
1 and all other agents are in other states (I = 5), then equations (3) and (15) predict that
E[〈q1(t)〉] = 〈q1(0)〉 = 1/2, though the proportion of agents with opinion 1 is only 1/N . The
conclusion agrees with previous analytical results for I = 2 [14]. Thus a single individual
with a considerable number of neighbors largely determines the final state.

Generally the initial qi is not equal to 〈qi〉. If we distribute each opinion i randomly
on agents in the network, the initial qi will be approximately equal to 〈qi〉. However for
heterogeneous networks, such as scale-free ones, if we constrainedly assign a specific opinion
i to the hub agents with the largest degrees, the initial 〈qi〉 will be much larger than qi .

We know that different social networks can have different degree distributions. Many
real-life social networks are exponential, while the degree distribution of some particular
social networks, such as sexual contacts, is a power law [39]. The degree distribution of many
scientific collaboration networks is usually fat-tailed [40]. Recent research on online social
networks reveals that the degree distribution of these social networks is commonly a power
law [41–44]. Many researchers have used power-law networks or a BA network as the model
of social networks [45–47]. It is plausible to assume that social networks have a scale-free
network structure. Thus we will validate the above conclusions by numerical simulations
performed on a BA network of size N = 104 and mean degree 〈k〉 = 6 (m = 3) [48]. The
degree distribution of the BA network is a power-law pk ∼ k−3. The initial I = 5 opinions are
randomly assigned. We then randomly select one agent in the network and with probability v

update his opinion to be the opinion of one of his neighbors who is picked randomly. These
steps constitute the sample paths of qi and 〈qi〉 and we record the data after every N/v steps.
We repeat this experiment 100 times, so that 100 sample paths are collected for each qi and
〈qi〉. We then take the mean of qi and 〈qi〉 over the sample paths and obtain the estimates for
E(qi) and E[〈qi〉].

In this case the average values of qi are very close to those of 〈qi〉, thus for distinguishability
we give the average values of 〈qi〉 (figure 2(a)) and the differences between the mean values
of 〈qi〉 and qi (figure 2(b)). It is clear that for random assignment of opinions the initial qi is
approximately equal to 〈qi〉. Besides figure 2 also confirms equation (21), i.e. the convergence
of E(qi) to E[〈qi〉], and the martingale property of 〈qi〉, i.e. E[〈qi〉] does not change with
time. Figure 2(c) shows the error bars with ±1 standard deviation for qi and 〈qi〉. Since all
agents are undecided, the standard deviations of qi and 〈qi〉 increase with T, which leads to
indistinguishability of error bars between the two lines with close mean values, thus we show
error bars only for q1 and 〈q5〉.

To show that a small number of agents with large degrees can significantly affect the final
state of the evolution of opinions, we constrainedly assign the opinion 5 to the 100 largest
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Figure 2. Evolutions of mean values of qi and 〈qi〉 for v = 0.7. The unit of time T is N/v steps.
The simulation is performed on a BA network with 104 agents and mean degree 6.

degree agents of the BA network. As shown in figure 3(a), the large-degree agents contribute
a considerable weight to 〈q5〉 and its initial value is much larger than q5. It is also found that
〈qi〉 is still a martingale, and the mean values of qi approach mean values of 〈qi〉 as time goes
on as predicted by equation (21).
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The degree assortativity coefficient plays an important role in the model. By random
degree-preserving rewiring of the original BA network, we tune its degree assortativity to
r ≈ 0.3 and r ≈ −0.2, respectively [49]. As shown in figure 3 we find that in this case
the mean values of qi still tend toward the mean values of 〈qi〉, though strictly speaking the
convergence in equations (20) and (21) no longer holds for strongly correlated networks,
assortative or disassortative. The tendency slows down with the increase of r, which is
intuitively reasonable. For networks with positive degree correlation, the agents with large
degrees are apt to link with those with similar degrees. In figure 3 a specific opinion is assigned
to the largest degree agents; if the agents are selected to update their opinions, due to the positive
correlation, it is very likely that their neighbors who are chosen still are the largest degree agents
with the same opinion as theirs, leading to the slow tendency of E(qi) for assortative networks.
However for r < 0 the opposite situation occurs resulting in the fast tendency of E(qi) to
E[〈qi〉].

The conventional wisdom is that social networks are positively assorted on degree and the
biological and technological networks are negatively assorted. However recent research on
the Internet community modifies the wide-spread belief. Online social networks show more
diverse patterns, including disassortative, assortative and neutral mixing [44]. Thus according
to figure 3, if most large-degree persons hold the same opinion, the opinion will diffuse faster
in the disassortative social networks than in the assortative ones, whether the opinion is good
or not.

For homogeneous networks, such as random graphs and small-world networks, due to the
homogeneity of agent degrees, even though we could manually assign a specified opinion i
to the largest degree agents, the initial 〈qi〉 is still approximately equal to qi . In this case the
large-degree agents contribute a negligible weight to the 〈qi〉.

Further we also study evolutions of mean values of qi and 〈qi〉 for randomly distributed
u following specific probability densities. Figure 4 shows the simulation results for three
different distributions: exponential, power-law and uniform distributions. We find that the
mean values of qi still tend toward those of 〈qi〉 over time. However, strictly speaking,
in this case the convergence in equations (20) and (21) does not hold since u is a random
variable.

3.2. When v is degree dependent

In social life, the assumption that each agent has the same v is not so realistic. For practical
purposes different agents with different degrees (corresponding to social status and prestige)
can have disparate v. If v is degree dependent, the evolution scenario of opinions will change
remarkably. In this case the original v is denoted by vk , and from equation (13) we have

dqi,k = (〈qi〉 − qi,k

)
vk dt +

1√
nk

σi,k

√
vk dBt, (22)

thus

d〈qi(t)〉 =
∑

k kpk[(〈qi〉 − qi,k)vk dt]∑
k kpk

+

∑
k kpk

[
1√
nk

σi,k

√
vk dBt

]
∑

k kpk

. (23)

〈qi(t)〉 is no longer a martingale.
When the number N of agents is very large, we have

qi,k(t) = qi,k(0) e−vkt + 〈qi〉(1 − e−vkt ) (24)

and equation (18) still holds.
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Figure 3. Evolutions of mean values of qi and 〈qi〉 for v = 0.7. The unit of time T is N/v

steps. The opinion of the 100 agents with the largest degrees is assigned to be 5. The simulation is
performed on a BA network with 104 agents and mean degree 6. (a) Degree assortativity coefficient
r ≈ 0, (b) r ≈ 0.3 and (c) r ≈ −0.2.
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Figure 4. Evolutions of mean values of qi and 〈qi〉 for randomly distributed u following specific
probability densities: (a) exponential distribution in (0,1) with mean 0.1; (b) power-law distribution
pu = 5 × 10−5 · u−2.5 in (0,1); (c) uniform distribution in (0,1). The unit of time T is N/ 〈v〉
steps. The opinion of the 100 agents with the largest degrees is assigned to be 5. The simulation
is performed on a BA network with 104 agents and mean degree 6.
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Further, we can obtain

qi(t) =
∑

k

nkqi,k(0) e−vkt

/
N + 〈qi〉

(
1 −

∑
k

nk e−vkt

/
N

)
, (25)

thus equations (20) and (21) also still hold.
When vk is degree dependent, 〈qi〉 does not possess the martingale property, however

E(qi) still converges to E [〈qi〉] as time goes on. From equations (23) and (18), for a large
population we find

lim
t→∞ d〈qi(t)〉 =

∑
k kpk

[
1√
nk

σi,k

√
vk dBt

]
∑

k kpk

, (26)

and in the long time limit the martingale feature of 〈qi〉 can be recovered.
In real life the people with high social status could possess more capability of judgment

and self-confidence. They may be more likely to insist on their own opinions, not subject to
the opinions of their acquaintances. Thus the larger the agent’s degree, the more possible that
the agent will keep his current opinion, i.e. vk is a decreasing function of k. Specifically we
may suppose that vk decays algebraically with k according to a power law vk = ck−α , where
0 < c � 1 and α � 0 are two constants. When α = 0, vk = c and the case that v is degree
independent is recovered. Especially when α = 1, from equation (23) we have

d〈qi(t)〉 = c[〈qi〉 − qi]dt

〈k〉 +

∑
k kpk

[
1√
nk

σi,k

√
vk dBt

]
∑

k kpk

. (27)

Thus in the limit of long time when qi(t) converges to 〈qi〉, equation (27) becomes
equation (26). Figure 5 shows the simulation results performed on the BA network for
vk = 0.9 · k−1 which validate equation (21).

It is noteworthy that our comment that the people with high social status could possess
more self-confidence is only an assumption. To the best of our knowledge there is no
sociological study corroborating it. To obtain some information on the distribution of u or
its correlation with degree in population, one would have to make a detailed social survey of
floating voters. Besides, all error bars behave similarly in figures 2–5 where all agents are
undecided, and the standard deviations of qi and 〈qi〉 increase with T.

4. Evolution of opinions for decided and undecided agents

We now further extend our model to allow a fraction of agents to have fixed opinions which
do not change over time (u = 1). The stubborn agents can affect others but they themselves
cannot be affected by others. The stubbornness of agents may have more general real-life
meaning, namely a person or party (represented still by one node) that through political
propaganda influences all its neighbors without getting significative opinion feedback from
them. In a social context, the obstinate agents can be regarded as decided persons while the
other agents as undecided people.

Let si,k be the fraction of agents holding opinion i forever in all degree-k agents. In this
case equation (4) can be modified as{

Pī→i (k) = pk(1 − qi,k − ∑
j �=i sj,k)vk〈qi〉

Pi→ī (k) = pk(qi,k − si,k)vk (1 − 〈qi〉) .
(28)

Repeating the steps in the previous section, we obtain
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Figure 5. Evolutions of mean values of qi and 〈qi〉 for vk = 0.9 ·k−1. The unit of time T is N/v〈k〉
steps. The opinion of the 100 agents with the largest degrees is assigned to be 5. The simulation
is performed on a BA network with 104 agents and mean degree 6.

dqi,k =
⎡
⎣〈qi〉 − qi,k + si,k (1 − 〈qi〉) −

∑
j �=i

sj,k · 〈qi〉
⎤
⎦ vk dt +

1√
nk

σ ′
i,k

√
vk dBt

=
⎡
⎣

⎛
⎝1 −

∑
j

sj,k

⎞
⎠ 〈qi〉 − qi,k + si,k

⎤
⎦ vk dt +

1√
nk

σ ′
i,k

√
vk dBt . (29)

For a large population, applying the mean-field approximation, we have

qi,k(t) = qi,k(0) e−vkt +

⎡
⎣

⎛
⎝1 −

∑
j

sj,k

⎞
⎠ 〈qi〉 + si,k

⎤
⎦ (1 − e−vkt ), (30)

and thus

lim
t→∞ qi,k(t) =

⎛
⎝1 −

∑
j

sj,k

⎞
⎠ 〈qi〉 + si,k. (31)

When si,k = 0 the above formula is reduced to equation (18). From equation (30) we obtain

qi(t) =
∑

k

nkqi,k(0) e−vkt

/
N + 〈qi〉 − 〈qi〉

(∑
k

nk e−vkt

)/
N

−〈qi〉
⎡
⎣∑

k

nk ·
⎛
⎝∑

j

sj,k

⎞
⎠

⎤
⎦/

N

+ 〈qi〉
⎡
⎣∑

k

nk ·
⎛
⎝∑

j

sj,k · e−vkt

⎞
⎠

⎤
⎦/

N + si −
∑

k

nksi,k e−vkt

/
N, (32)
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where si represents the fraction of decided agents holding opinion i forever. Thus

lim
t→∞ qi(t) = 〈qi〉 − 〈qi〉

⎡
⎣∑

nk ·
⎛
⎝∑

j

sj,k

⎞
⎠

⎤
⎦/

N + si,

= (1 − s)〈qi〉 + si, (33)

where s represents the fraction of decided agents. When si = 0 the above formula is reduced
to equation (20).

When vk is a degree-independent constant, from equation (29), we have

d〈qi〉
dt

=
⎡
⎣〈si〉 − 〈qi〉

∑
j

〈sj 〉
⎤
⎦ v, (34)

and the equilibrium condition is obtained by⎡
⎣〈si〉 − 〈q̂i〉

∑
j

〈sj 〉
⎤
⎦ v = 0, (35)

where 〈q̂i〉 = limt→∞〈qi(t)〉. Thus

〈q̂i〉 = 〈si〉
/∑

j

〈sj 〉. (36)

From equations (33) and (36) we find that, as vk is degree independent and t → ∞, both 〈qi〉
and qi converge to fixed proportions which only depend on the distribution of decided agents
and are independent of the initial assignment of undecided agents. In particular if all the
decided persons stick to the same opinion i, 〈q̂i〉 = 1 = q̂i , i.e. opinion i will finally pervade
the whole population no matter how small the number of stubborn people is. That seems to
validate the proverb ‘Success belongs to the persevering’. Again the weighted fractions in
equation (36) demonstrate that high-degree agents are more influential to the final state of the
dynamical process. The scenario in the end is the equilibrium state with the coexistence of
diverse opinions that are just the ones held by the decided people, although it is possible that
the convergence needs such a long time that it can never be reached in reality. Real social
networks always evolve over time, thus the convergence also will depend on their evolution.
There are two timescales, one from the opinion convergence and the other from the networks.
Further if the decided agents are randomly distributed, 〈q̂i〉 = 〈si〉

/∑
j 〈sj 〉 = si/s = q̂i .

Figure 6 shows the simulation results performed on the BA network. The initial agents
both with opinions 1 and 2 are the mixing of decided and undecided ones, while all the other
agents holding opinions 3, 4 and 5 are undecided ones. Besides we assume that the 100
largest degree agents are the stubborn ones with opinion 1; s1 = 0.3, s2 = 0.2 and s = 0.5.
According to equations (33) and (36), and the initial distribution of decided agents, we obtain
q̂1 = 0.63667, 〈q̂1〉 = 0.67335, q̂2 = 0.36333, 〈q̂2〉 = 0.32665 and 〈q̂i〉 = q̂i = 0 for i = 3,
4 and 5. As shown in figure 6, in this case the standard deviations of 〈qi〉 and qi are all very
small and both 〈qi〉 and qi fluctuate slightly around their limits as T is sufficiently large, which
can result from the stubborn agents in networks. Besides the average values of qi and 〈qi〉 are
in good agreement with the limits q̂i and 〈q̂i〉 respectively for large T.

5. Conclusions and discussions

As we know unanimity is one of the most important aspects of social group dynamics.
Everyday life presents many situations in which it is necessary for a group to reach shared
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Figure 6. Evolutions of mean values of qi and 〈qi〉 for v = 0.8. Error bars with ±1 standard
deviation are shown. The unit of time T is N/[v(1 − s)] steps. The 100 largest degree agents are
assumed to be the stubborn ones with opinion 1. The simulation is performed on a BA network
with 104 agents and mean degree 6. The dashed lines indicate the limit values for qi and 〈qi〉 based
on equations (33) and (36).

decisions. Consensus makes some opinion stronger and amplifies its impact on society.
However in real life, after a long-term interaction of people in a society, the phenomenon of
coexistence of different opinions can also exist, which embodies the strong heterogeneity of
individual character.

In the paper, we study a model of discrete opinion dynamics based on social influence. If
all persons are undecided ones in a network, we find that for any number of initial opinions,
when the self-confidence parameter is a constant, the weighted proportion of each opinion is
a martingale. The fraction of each opinion will gradually converge to its weighted proportion
and the tendency can slow down with the increase of degree assortativity coefficient, whether
the self-confidence level is degree dependent or not. Further we also consider the scenario
that in the population there are stubborn persons whose opinions never change and find that
for constant self-confidence level, both fraction and weighted proportion of each opinion will
converge to fixed values which only depend on the distribution of stubborn persons, and are
independent of the initial assignment of undecided persons.

In the model, if all agents are undecided ones, the different opinions of individuals will
reach consensus in the end for a finite population. However if there are decided persons in a
society, the state of coexistence of diverse opinions can occur. In both cases we quantitatively
show the influence of agents with large degrees on the final state of opinion evolution.

We can naturally extend the model to the condition that the social influence is not
symmetrical. For instance, agent A can affect the decisions or choices of agent B; however,
the opposite case almost never occurs. This corresponds to the model on directed networks
in which the fact that A points to B means A can influence B but not the other way round.
Evidently if we replace the degree by out-degree in the above text, the previous derived
conclusions still hold.

Opinion dynamics is similar in some ways to information spreading in networks where
information is propagated from the persons who know it to those who do not know it [46, 50],
if we regard opinion as a kind of special information. Information could propagate to the whole
networks and some specific opinion could also prevail in the whole population. However, in
opinion dynamics there exist several different opinions which initially are distributed in the
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networks and different opinions belonging to two connected agents could interact with each
other, while in information spreading there usually only exists a kind of information (e.g.
confidential or risky information) diffusing in networks.

The parameters studied in this paper are all global measures (r, pk , etc). It is clear that
for the same values of global network measures, the connections between persons may be
distributed in many completely different ways. Recent research shows that for spreading
information in networks, the different ways of connection could change the accessibility of
information from one node to another [47, 51].

In our model all agents update their opinions asynchronously and independently of each
other. In future work we can study spontaneous changes of opinions in an improved model.
Besides our model is based on unweighted networks, which is not realistic to some extent.
Certainly in social life, changing opinion strongly depends on how close the acquaintance is
between the two interacting persons. Good friends have a stronger influence on each other than
not such good friends [52]. For the discrete opinion dynamics on weighted networks, good
friends connected by large-weight edges can interact more frequently than ordinary friends
connected by low-weight edges, or the v value is weight dependent and a person is more likely
to follow the suggestions of his intimate friends than general friends. Opinion dynamics on
weighted networks will be our research focus in our future work.
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